Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Correlations in secondary-ion yields from Cs-implanted semiconductors

Identifieur interne : 01CE03 ( Main/Repository ); précédent : 01CE02; suivant : 01CE04

Correlations in secondary-ion yields from Cs-implanted semiconductors

Auteurs : RBID : Pascal:96-0039147

Descripteurs français

English descriptors

Abstract

Elemental and compound semiconductors (Si, Ge, InP, InSb, ZnSe, CdS, CdSe and CdZnTe) were implanted with Cs+ ions of 5.5 and 14.5 keV energy and fluences ranging from 2 x 1015 Cs+/cm2 up to saturation values (>1 x 1017 cm-2). These implants were depth profiled by secondary-ion mass spectrometry (SIMS) employing 3 keV Ar+ primary ions and monitoring positive secondary ions. Specifically, Cs-carrying molecular species like Cs2+ and MCs+ (here M stands for an element of the sample) were recorded during Cs removal in order to investigate a possible correlation between the yields of those ions and that of Cs+. It is observed that for all specimens with the exception of Si the flux of MCs+ ions scales linearly with the Cs+ intensity over a wide range of cesium concentration (several orders of magnitude in some cases) ; for silicon deviations from this scaling are found at the highest Cs content and are tentatively ascribed to changes of the sputtering yield in the heavily doped Si specimens. The Cs2+/Cs+ ratio, on the other hand, is found to decrease more than linearly (possibly exponentially) upon reduction of the Cs concentration, indicative of a decreasing formation probability of Cs2 dimers at low concentrations due to an increasing (average) distance between individual Cs atoms. By contrast, the linearity of MCs+ and Cs+ yields corroborates a mechanism of formation of MCs+ molecular species through an association of neutral M atoms and Cs+ ions in double-collision sputtering events.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:96-0039147

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Correlations in secondary-ion yields from Cs-implanted semiconductors</title>
<author>
<name sortKey="Gnaser, H" uniqKey="Gnaser H">H. Gnaser</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Univ. Kaiserslautern, Fachbereich Physik and Inst. Oberflächen Schichtanalytik</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">96-0039147</idno>
<date when="1995">1995</date>
<idno type="stanalyst">PASCAL 96-0039147 INIST</idno>
<idno type="RBID">Pascal:96-0039147</idno>
<idno type="wicri:Area/Main/Corpus">01B800</idno>
<idno type="wicri:Area/Main/Repository">01CE03</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0039-6028</idno>
<title level="j" type="abbreviated">Surf. sci.</title>
<title level="j" type="main">Surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Cadmium selenides</term>
<term>Cadmium sulfides</term>
<term>Cadmium tellurides</term>
<term>Cesium additions</term>
<term>Depth profiles</term>
<term>Experimental study</term>
<term>Germanium</term>
<term>Indium antimonides</term>
<term>Indium phosphides</term>
<term>Ion implantation</term>
<term>SIMS</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Ternary compounds</term>
<term>Zinc selenides</term>
<term>Zinc tellurides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Implantation ion</term>
<term>Profil profondeur</term>
<term>Addition césium</term>
<term>SIMS</term>
<term>Silicium</term>
<term>Germanium</term>
<term>Indium phosphure</term>
<term>Indium antimoniure</term>
<term>Zinc séléniure</term>
<term>Cadmium sulfure</term>
<term>Cadmium séléniure</term>
<term>Cadmium tellurure</term>
<term>Zinc tellurure</term>
<term>ZnSe</term>
<term>CdS</term>
<term>CdSe</term>
<term>CdZnTe</term>
<term>6172T</term>
<term>6172V</term>
<term>In P</term>
<term>In Sb</term>
<term>Se Zn</term>
<term>Cd S</term>
<term>Cd Se</term>
<term>Cd Te Zn</term>
<term>Composé binaire</term>
<term>Composé ternaire</term>
<term>Matériau semiconducteur</term>
<term>Si</term>
<term>Ge</term>
<term>InP</term>
<term>InSb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Elemental and compound semiconductors (Si, Ge, InP, InSb, ZnSe, CdS, CdSe and CdZnTe) were implanted with Cs
<sup>+</sup>
ions of 5.5 and 14.5 keV energy and fluences ranging from 2 x 10
<sup>15</sup>
Cs
<sup>+</sup>
/cm
<sup>2</sup>
up to saturation values (>1 x 10
<sup>17</sup>
cm
<sup>-2</sup>
). These implants were depth profiled by secondary-ion mass spectrometry (SIMS) employing 3 keV Ar
<sup>+</sup>
primary ions and monitoring positive secondary ions. Specifically, Cs-carrying molecular species like Cs
<sub>2</sub>
<sup>+</sup>
and MCs
<sup>+</sup>
(here M stands for an element of the sample) were recorded during Cs removal in order to investigate a possible correlation between the yields of those ions and that of Cs
<sup>+</sup>
. It is observed that for all specimens with the exception of Si the flux of MCs
<sup>+</sup>
ions scales linearly with the Cs
<sup>+</sup>
intensity over a wide range of cesium concentration (several orders of magnitude in some cases) ; for silicon deviations from this scaling are found at the highest Cs content and are tentatively ascribed to changes of the sputtering yield in the heavily doped Si specimens. The Cs
<sub>2</sub>
<sup>+</sup>
/Cs
<sup>+</sup>
ratio, on the other hand, is found to decrease more than linearly (possibly exponentially) upon reduction of the Cs concentration, indicative of a decreasing formation probability of Cs
<sub>2</sub>
dimers at low concentrations due to an increasing (average) distance between individual Cs atoms. By contrast, the linearity of MCs
<sup>+</sup>
and Cs
<sup>+</sup>
yields corroborates a mechanism of formation of MCs
<sup>+</sup>
molecular species through an association of neutral M atoms and Cs
<sup>+</sup>
ions in double-collision sputtering events.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0039-6028</s0>
</fA01>
<fA02 i1="01">
<s0>SUSCAS</s0>
</fA02>
<fA03 i2="1">
<s0>Surf. sci.</s0>
</fA03>
<fA05>
<s2>342</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Correlations in secondary-ion yields from Cs-implanted semiconductors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GNASER (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Univ. Kaiserslautern, Fachbereich Physik and Inst. Oberflächen Schichtanalytik</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
</fA14>
<fA20>
<s1>319-326</s1>
</fA20>
<fA21>
<s1>1995</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12426</s2>
<s5>354000059953610390</s5>
</fA43>
<fA44>
<s0>0000</s0>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>96-0039147</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Elemental and compound semiconductors (Si, Ge, InP, InSb, ZnSe, CdS, CdSe and CdZnTe) were implanted with Cs
<sup>+</sup>
ions of 5.5 and 14.5 keV energy and fluences ranging from 2 x 10
<sup>15</sup>
Cs
<sup>+</sup>
/cm
<sup>2</sup>
up to saturation values (>1 x 10
<sup>17</sup>
cm
<sup>-2</sup>
). These implants were depth profiled by secondary-ion mass spectrometry (SIMS) employing 3 keV Ar
<sup>+</sup>
primary ions and monitoring positive secondary ions. Specifically, Cs-carrying molecular species like Cs
<sub>2</sub>
<sup>+</sup>
and MCs
<sup>+</sup>
(here M stands for an element of the sample) were recorded during Cs removal in order to investigate a possible correlation between the yields of those ions and that of Cs
<sup>+</sup>
. It is observed that for all specimens with the exception of Si the flux of MCs
<sup>+</sup>
ions scales linearly with the Cs
<sup>+</sup>
intensity over a wide range of cesium concentration (several orders of magnitude in some cases) ; for silicon deviations from this scaling are found at the highest Cs content and are tentatively ascribed to changes of the sputtering yield in the heavily doped Si specimens. The Cs
<sub>2</sub>
<sup>+</sup>
/Cs
<sup>+</sup>
ratio, on the other hand, is found to decrease more than linearly (possibly exponentially) upon reduction of the Cs concentration, indicative of a decreasing formation probability of Cs
<sub>2</sub>
dimers at low concentrations due to an increasing (average) distance between individual Cs atoms. By contrast, the linearity of MCs
<sup>+</sup>
and Cs
<sup>+</sup>
yields corroborates a mechanism of formation of MCs
<sup>+</sup>
molecular species through an association of neutral M atoms and Cs
<sup>+</sup>
ions in double-collision sputtering events.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A72T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A72V</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Implantation ion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Ion implantation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Profil profondeur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Depth profiles</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition césium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Cesium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>SIMS</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>SIMS</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium antimoniure</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Zinc séléniure</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Zinc selenides</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Cadmium sulfure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Cadmium sulfides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cadmium séléniure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cadmium selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cadmium tellurure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Zinc tellurure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Zinc tellurides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>ZnSe</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>CdSe</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>CdZnTe</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6172T</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6172V</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>In Sb</s0>
<s4>INC</s4>
<s5>61</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Se Zn</s0>
<s4>INC</s4>
<s5>62</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Cd S</s0>
<s4>INC</s4>
<s5>63</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Cd Se</s0>
<s4>INC</s4>
<s5>64</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Cd Te Zn</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>81</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>81</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>82</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Matériau semiconducteur</s0>
<s5>83</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>83</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Ge</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>InSb</s0>
<s4>INC</s4>
<s5>95</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>84</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>84</s5>
</fC07>
<fN21>
<s1>015</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 01CE03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 01CE03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:96-0039147
   |texte=   Correlations in secondary-ion yields from Cs-implanted semiconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024